Chapter 4.2: The Mean Value Theorem



Rolle's Theorem

If f(x) is a function so that

» f(a) =1f(b)

» continuous fora< x < b

» differentiable for a < x < b
then for some ¢ where a < ¢ < b we
have f’(c) = 0.
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[dea: f must achieve and absolute
max/min. These are at critical points
and at least one is not an endpoint so

must be where derivative of f is 0.
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Differentiable is necessary

No ¢ with f'(c) = 0. |x| for x € [-2,2]
Example: f(x) =x3—7x,a=-3, b=1
Notice f(—3) = (1) = —6.

Noe f’(x) = 3x%> — 7. We want ¢ such
that 0 = f'(c) = 3c®> — 7.

It gives ¢ = iﬁ. Since a < ¢ < b,
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Mean Value Theorem

If f(x) is a function that is Example:
» continuous fora< x < b 5
» differentiable for a < x < b
then for some ¢ where a < ¢ < b we H )
have (b _ f ,
_ f(a - .
ey = F0) = 1(2)
b—a
2 - —
Idea: Instantaneous rate of change at ¢ .
is equal to the average rate of change for
a<x<b. 0 | | \ w
0 2 4 6 8 10
Rolle's Theorem, but slightly tilted. Note: The mean value theorem has been

used by law enforcement to catch
speeders!
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Examples '(¢c) = L‘g(a) for c € (a, b)

h—
Verify the mean value theorem for
h(x) = In(x — 1) for a= 2 and f(x):zfﬁ,azo,bzl
b=e+1 The average rate of change is
The average rate of change is
f(b)y—f(a) 5-0 2
hle+1)—h(2) 1 b—a 1-0 3

e+1—-2  e—1
Now the derivative
and the derivative is h'(x) = 1/(x — 1).

Consequently, we wish to solve f’(x) _ 2(2x +1) — 2x(2)
(2x + 1)?
1 1 2
= —s c=¢e —
e—1 c—1 (2x + 1)2
Solve f'(c) = 2.

2 2
=" 0 3=(2c+1)?
3 (et 17 (2¢+1)
. +v3-1 V3-1

2 T

a4



() — f(b)—f(a)
Consequences of f'(c) = == —~ for c € (a, b)
> If f/(x) =0 for all a < x < b, then > If f'(x) = g'(x) for all x € (a, b),
f is constant on (a, b). That is then there is a constant C such that
f(x)=c.
Let a < y < x < b. By mean value f(x)=g(x)+C
theorem
for all x € (a, b).
f(x) —f(y) o - Define G = f — g. Then for any
———— =f'(z) =0.
X—y x € (a, b), we have
This implies f(X) = f(y) G/(X) = f/(x) — g/(x) =0

By the previous point, it follows
that f(x) — g(x) = G(x) = C for
all x in (a, b).

If two derivatives are equal, they came from functions which differ by a constant.
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Examples
Consider

f(x)=Inx  g(x)=In(ax)

Show f’(x) = g’(x) and determine C so
that f(x) = g(x) + C.
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F)== g)=—-a=-
(X) X g(X) ax ? X

Notice f(x) and g(x) differ by the same
constant everywhere. So we can pick for
example x = 1 and get

C=f(1)—g(l)=Inl—Ina=—1Ina
Hence f(x) = g(x) — Ina.

We can check that
g(x) =In(ax) =Ina+Inx
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Find all function f(x) whose derivative is
cos(x) on (—o0, ).
Let g(x) = sin(x). Then
g'(x) = cos(x) = f'(x)
on (—o0,o0) and so

f(x) =sin(x)+ C

for some constant C.



Examples

Find all function f(x) whose derivative is Given that the velocity is v = 32t — 2 on

1/x on (0,00) and f(1) = 0.
Let g(x) = In(x), then

g'(x)=1/x=f'(x)

on (0,00) and thus f(x) = In(x) + C.
Since 0 = f(1), it follows that the only
function with this property is
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(0,1) and s(1/2) = 4, find an equation
for the position function s(t) for t in
(0,1).
Let g(t) = 16t> — 2t, then
gl(t)y=32t—2=v
on (0,1) and so
s(t) =16t — 2t + C.
Plugging in 4 = s(1/2) then yields
4=5(1/2)=4-1+C=3+C

and so C = 1. Therefore, the position on
(0,1) is

s(t) = 16t* — 2t + 1.



